Description
MPNH Series flow meters are approved for use in ordinary locations (see specifications)
Inline style thermal mass flow meters include a flow section that is usually specified to match the user’s flow conduit and is then plumbed directly into the process line. This design has the sensing elements mounted directly in the flow section for exposure to the process gas. Our inline style thermal mass flow meters are available in sizes from 1/4″ pipe through 4″ pipe or tube, and are provided with a variety of options such as MNPT ends, tube end fittings, butt weld ends, flanged end configurations, etc. as required. Pipe sizes in excess of 4″ typically require insertion style thermal mass flow meters.
Remote style thermal mass flow meters utilize two enclosures. One enclosure is mounted at the point of measurement on the flow section or on the probe assembly. This enclosure may be rated for either hazardous environments or for ordinary, non-hazardous environments, as necessary. The second (remote) enclosure is usually placed in a readily accessible location rated for non-hazardous conditions. (Contact the factory for information concerning remote explosion-proof enclosure). The remote enclosure includes the all of the electrical connections as well as the linearizing electronics and the display/keypad assembly. Only a four-wire, twisted-pair cable is required to carry the input power and flow signal between the two enclosures.
Thermal mass flow meters use the principle of convective heat transfer to directly measure mass flow. EPI’s proprietary thermal mass flow sensors use two ratiometrically-matched, reference-grade platinum Resistance Temperature Detectors (RTDs). The platinum sensing element wire is encapsulated in a 316 Stainless Steel sheath or, if specified, a Hastelloy C sheath. Our microcontroller operated smart sensor technology preferentially heats one RTD; the other RTD acts as the temperature reference. The process gas flow dissipates heat from the first RTD, causing an increase in the power required to maintain a balance between the RTDs. This increase is directly related to the gas molecular rate of flow. Our sensors are temperature compensated for a wide process gas temperature range and insensitive to pressure changes, so the output signal is a true mass flow rate signal.